2025-09-17
ในโลกของอิเล็กทรอนิกส์ที่ทันสมัยที่วิ่งวิ่งวิ่งวิ่งวิ่งวิ่ง หน่วยงานที่เล็กลง เร็วขึ้นและมีพลังมากขึ้นมันไม่ใช่แค่การเก็บส่วนประกอบ; ประเภทการบรรจุที่เหมาะสมกําหนดขนาดของอุปกรณ์, ผลงาน, การจัดการความร้อน, และแม้กระทั่งประสิทธิภาพการผลิตจากพัสดุ DIP คลาสสิกที่ใช้ในชุดอิเล็กทรอนิกส์ในโรงเรียน ไปยัง CSP ที่เล็กมาก ที่ใช้พลังงานในนาฬิกาฉลาด, แต่ละชนิดของบรรจุ PCB 10 อันดับแรกถูกปรับปรุงเพื่อแก้ปัญหาการออกแบบเฉพาะเจาะจง. คู่มือนี้แยกแยกแต่ละชนิดหลัก, คุณสมบัติ, การใช้งาน, ข้อดีและข้อเสียและวิธีการเลือกที่เหมาะสมสําหรับโครงการของคุณ.
ประเด็นสําคัญ
1ประเภทบรรจุ PCB 10 อันดับแรก (SMT, DIP, PGA, LCC, BGA, QFN, QFP, TSOP, CSP, SOP) แต่ละชนิดตอบสนองความต้องการที่แตกต่างกันและ BGA สําหรับการทํางานสูง.
2.การเลือกบรรจุภัณฑ์มีผลต่อขนาดของอุปกรณ์โดยตรง (เช่น CSP ลดผลกระทบ 50% เมื่อเทียบกับบรรจุภัณฑ์แบบดั้งเดิม) การจัดการความร้อน (พัดล่าง QFN ต่ําลดความต้านทานความร้อน 40%)และความเร็วในการประกอบ (SMT ทําให้การผลิตอัตโนมัติ).
3มีข้อเสียสําหรับทุกชนิด: SMT หนาแน่น แต่ซ่อมแซมยาก, DIP ใช้งานง่าย แต่หนาแน่น, และ BGA เพิ่มประสิทธิภาพ แต่ต้องตรวจสอบรังสีเอ็กซ์สําหรับการผสม
4ความต้องการของอุปกรณ์ (ตัวอย่างเช่น อุปกรณ์สวมใส่ต้องการ CSP, การควบคุมอุตสาหกรรมต้องการ DIP) และความสามารถในการผลิต (ตัวอย่างเช่น เส้นทางอัตโนมัติจัดการ SMT, ชุดทํางานมือ DIP) ควรขับเคลื่อนการเลือกบรรจุ
5.การร่วมมือกับผู้ผลิตในระยะแรก จะทําให้การบรรจุที่เลือกของคุณตรงกับเครื่องมือการผลิต
ประเภทบรรจุ PCB 10 อันดับแรก: การแบ่งแยกรายละเอียด
ประเภทของบรรจุ PCB ได้ถูกแบ่งเป็นหมวดตามวิธีการติดตั้ง (การติดตั้งบนผิว VS ช่องผ่าน), การออกแบบนํา (นํา VS ไม่มีนํา) และขนาดด้านล่างมีภาพรวมครบวงจรของแต่ละ 10 แบบหลัก ๆโดยเน้นในสิ่งที่ทําให้มันพิเศษและเมื่อใช้มัน
1. SMT (เทคโนโลยีการติดตั้งบนพื้นผิว)
ภาพรวม
SMT ได้ปฏิวัติด้านอิเล็กทรอนิกส์โดยการกําจัดความจําเป็นของการเจาะรูใน PCBsทําให้อุปกรณ์ เช่น สมาร์ทโฟน และอุปกรณ์ที่ใส่ได้ มีขนาดเล็กและเบา. SMT ใช้เครื่องจักรรับและวางที่อัตโนมัติสําหรับการวางส่วนประกอบที่รวดเร็วและแม่นยํา ทําให้มันเหมาะสําหรับการผลิตจํานวนมาก
ลักษณะหลัก
a.การประกอบด้านสอง: องค์ประกอบสามารถวางอยู่ทั้งสองด้านของ PCB ทําให้ความหนาแน่นขององค์ประกอบเพิ่มเป็นสองเท่า
b. เส้นทางสัญญาณสั้น: ลดความแรงกด / ความจุของปรสิต, เสริมผลงานความถี่สูง (สําคัญสําหรับอุปกรณ์ 5G หรือ Wi-Fi 6)
c. การผลิตอัตโนมัติ: เครื่องจักรวางส่วนประกอบ 1,000+ รายนาที, ลดค่าแรงงานและความผิดพลาด.
d. ขนาดเล็ก: ส่วนประกอบเล็กกว่า 30~50% กว่าตัวแทนที่ผ่านรู
การใช้งาน
SMT มีอยู่ทุกที่ในอุปกรณ์อิเล็กทรอนิกส์ที่ทันสมัย เช่น
a.เทคโนโลยีผู้บริโภค: สมาร์ทโฟน คอมพิวเตอร์เล็ปโตป คอนโซลเกม และเครื่องใช้สวมได้
b.รถยนต์: หน่วยควบคุมเครื่องยนต์ (ECU) ระบบข้อมูลบันเทิง และ ADAS (Advanced Driver Assistance Systems)
c.อุปกรณ์การแพทย์: เครื่องตรวจสอบผู้ป่วย เครื่องตรวจฉายเสียงแบบพกพา และเครื่องติดตามความฟิตเนส
d.อุปกรณ์อุตสาหกรรม: เซ็นเซอร์ IoT, แผ่นควบคุม และอินเวอร์เตอร์พลังแสงอาทิตย์
ข้อดีและข้อเสีย
| ข้อดี | รายละเอียด |
|---|---|
| ความหนาแน่นขององค์ประกอบสูง | ติดตั้งชิ้นส่วนมากขึ้นในพื้นที่ที่แคบ (เช่น PCB สมาร์ทโฟนใช้องค์ประกอบ SMT 500+). |
| การผลิตขนาดใหญ่อย่างรวดเร็ว | เส้นทางอัตโนมัติลดเวลาการประกอบด้วย 70% เมื่อเทียบกับวิธีการมือ |
| ผลประกอบการไฟฟ้าที่ดีกว่า | เส้นทางสั้นทําให้การสูญเสียสัญญาณน้อยที่สุด (เหมาะสําหรับข้อมูลความเร็วสูง) |
| ประหยัดสําหรับการใช้งานขนาดใหญ่ |
อัตโนมัติเครื่องจักรลดต้นทุนต่อหน่วย สําหรับอุปกรณ์ 10,000+ เครื่อง |
| ข้อเสีย | รายละเอียด |
|---|---|
| การซ่อมแซมที่ยาก | องค์ประกอบเล็ก ๆ น้อย ๆ (ตัวอย่างเช่น เครื่องต่อรองขนาด 0201) ต้องการเครื่องมือเฉพาะเพื่อแก้ไข |
| ค่าอุปกรณ์สูง | เครื่องชักและวางราคา 50k $ 200k $, ปัญหาสําหรับโครงการขนาดเล็ก. |
| การจัดการความร้อนที่ไม่ดีสําหรับชิ้นส่วนที่มีพลังงานสูง | ส่วนประกอบบางส่วน (เช่น ทรานซิสเตอร์พลังงาน) ยังต้องติดตั้งรูผ่านเพื่อการระบายความร้อน |
| จําเป็นต้องมีแรงงานที่มีฝีมือ | ช่างเทคนิคต้องได้รับการฝึกอบรมในการใช้เครื่อง SMT และตรวจสอบสานผสม |
2. DIP (แพคเกจในสายสอง)
ภาพรวม
DIP คือชนิดของบรรจุภัณฑ์ที่ผ่านรูแบบคลาสสิก, สามารถจําได้จากสองแถวของสตางค์ที่ยืดออกจากร่างพลาสติกหรือเซรามิคทรงสี่เหลี่ยมมันยังคงเป็นที่นิยมสําหรับความเรียบง่ายของมัน หมุนถูกใส่เข้าไปในรูขุดบน PCB และผสมด้วยมือDIP เหมาะสําหรับการทําต้นแบบ การศึกษา และการใช้งานที่การเปลี่ยนง่ายเป็นสิ่งสําคัญ
ลักษณะหลัก
a. ระยะห่างของปินขนาดใหญ่: ปินมักห่างกัน 0.1 นิ้ว ทําให้การผสมและการผสมด้วยมือง่าย
b. ความแข็งแรงทางเครื่องจักร: ปินมีความหนา (0.6 มิลลิเมตร) และทนต่อการบิด เหมาะสําหรับสภาพแวดล้อมที่รุนแรง
c. สามารถเปลี่ยนได้ง่าย: องค์ประกอบสามารถถอนออกและเปลี่ยนโดยไม่เสียหาย PCB (สําคัญในการทดสอบ)
d. การระบายความร้อน: ร่างพลาสติก / เซรามิคทําหน้าที่เป็นหน่วยระบายความร้อน ป้องกันชิปพลังงานต่ํา
การใช้งาน
DIP ยังคงใช้ในกรณีที่ความเรียบง่ายสําคัญ:
a.การศึกษา: ชุดอิเล็กทรอนิกส์ (ตัวอย่างเช่น Arduino Uno ใช้ไมโครคอนโทรลเลอร์ DIP เพื่อการประกอบของนักเรียนได้ง่าย)
b. Prototyping: บอร์ดการพัฒนา (ตัวอย่างเช่น บอร์ด breadboards) สําหรับการทดสอบการออกแบบวงจร
c.เครื่องควบคุมอุตสาหกรรม: เครื่องจักรโรงงาน (ตัวอย่างเช่น โมดูลรี) ที่มีส่วนประกอบที่ต้องการการเปลี่ยนในบางครั้ง
d.ระบบเก่า: คอมพิวเตอร์เก่า เกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกม
ข้อดีและข้อเสีย
| ข้อดี | รายละเอียด |
|---|---|
| การประกอบด้วยมือง่าย | ไม่ต้องใช้เครื่องมือพิเศษ เหมาะสําหรับนักชื่นชอบและโครงการเล็ก ๆ |
| สปิ้นแข็งแรง | ทนต่อการสั่นสะเทือน (ทั่วไปในสถานที่อุตสาหกรรม) |
| ราคาถูก | องค์ประกอบ DIP ราคาถูกกว่า SMT 20~30% |
| การตรวจสอบที่ชัดเจน | สตางค์จะเห็นได้ ทําให้การตรวจสอบสับผสมง่าย |
| ข้อเสีย | รายละเอียด |
|---|---|
| รอยเท้าที่ใหญ่ | ใช้พื้นที่ PCB มากถึง 2 เท่าของ SMT (ไม่ใช่สําหรับอุปกรณ์ขนาดเล็ก) |
| การประกอบช้า | การผสมผสานด้วยมือจํากัดความเร็วการผลิต (เพียง 10 รายการต่อชั่วโมง) |
| ผลงานความถี่สูงที่ไม่ดี | ปิ้นยาวเพิ่มความชักชวน ทําให้สัญญาณสูญเสียในอุปกรณ์ 5G หรือ RF |
| จํากัดจํานวน pin | แพ็คเกจ DIP ส่วนใหญ่มี 8 หมวด 40 ปิน (ไม่เพียงพอสําหรับชิปที่ซับซ้อนเช่น CPU) |
3. PGA (Pin Grid Array)
ภาพรวม
PGA เป็นชนิดการบรรจุที่มีประสิทธิภาพสูงที่ออกแบบสําหรับชิปที่มีการเชื่อมต่อหลายร้อยชิป. มันมีกรีดของปิน (50 ‰ 1,000 +) บนด้านล่างของร่างสี่เหลี่ยม / ตกตรงที่ใส่เข้าไปในซ็อตใน PCB. การออกแบบนี้เหมาะสําหรับองค์ประกอบที่ต้องการการปรับปรุงบ่อย ๆ (เช่น CPU) หรือการจัดการพลังงานสูง (เช่น การ์ดกราฟิก)
ลักษณะหลัก
a. จํานวนปินสูง: รองรับ 100 ‰ 1,000+ ปินสําหรับชิปที่ซับซ้อน (ตัวอย่างเช่น CPU Intel Core i7 ใช้แพคเกจ PGA 1,700 ปิน)
b. การติดตั้งซ็อต: องค์ประกอบสามารถถอนออก / เปลี่ยนแปลงได้โดยไม่ต้องผสม (ง่ายสําหรับการปรับปรุงหรือซ่อมแซม)
c. การเชื่อมโยงทางกลที่แข็งแกร่ง: ปินมีความหนา 0.3 มิลลิเมตร หนา 0.5 มิลลิเมตร ทนต่อการบิดและรับประกันการสัมผัสที่มั่นคง
d. การระบายความร้อนที่ดี: ร่างกระเป๋าขนาดใหญ่ (20 มม) 40 มม. แพร่กระจายความร้อน โดยได้รับความช่วยเหลือจาก heatsinks
การใช้งาน
PGA ใช้ในอุปกรณ์ที่มีประสิทธิภาพสูง:
a.คอมพิวเตอร์: ซีพีอีของโต๊ะ / นา็ปโตป (ตัวอย่างเช่น Intel LGA 1700 ใช้ตัวแปร PGA) และโปรเซสเซอร์
b.Graphics: GPU สําหรับ PC เกมและศูนย์ข้อมูล
c.อุตสาหกรรม: ไมโครคอนโทรลเลอร์พลังงานสูงสําหรับอัตโนมัติโรงงาน
d.Scientific: อุปกรณ์ (เช่น ออสซิลโลสโกป) ที่ต้องการการประมวลผลสัญญาณที่แม่นยํา
ข้อดีและข้อเสีย
| ข้อดี | รายละเอียด |
|---|---|
| การปรับปรุงง่าย | เปลี่ยน CPU/GPU โดยไม่ต้องเปลี่ยน PCB ทั้งหมด (ตัวอย่างเช่น การปรับปรุงโปรเซสเซอร์ของคอมพิวเตอร์เล็ปโตป) |
| ความน่าเชื่อถือสูง | การเชื่อมต่อซอคเกตลดความล้มเหลวของข้อผสมผสม (สําคัญสําหรับระบบที่มีความสําคัญ) |
| การจัดการความร้อนอย่างแข็งแรง | พื้นที่พื้นที่ใหญ่ทํางานกับเครื่องระบายความร้อนเพื่อเย็นชิป 100W + |
| ความหนาแน่นสูง | รองรับชิปที่ซับซ้อนที่ต้องการสัญญาณ / การเชื่อมต่อพลังงานหลายร้อย |
| ข้อเสีย | รายละเอียด |
|---|---|
| ขนาดใหญ่ | แพ็คเกจ PGA ขนาด 40 มม ใช้พื้นที่มากกว่า BGA ที่มีจํานวนปินเท่ากัน 4 เท่า |
| ค่าใช้จ่ายสูง | ซ็อต PGA เพิ่ม $ 5 ~ $ 20 ต่อ PCB (เทียบกับการผสมตรงสําหรับ BGA) |
| การประกอบด้วยมือ | ซ็อตต้องการการปรับตัวอย่างละเอียด ทําให้การผลิตช้าลง |
| ไม่ใช่สําหรับเครื่องมือขนาดเล็ก | ขนาดใหญ่เกินไปสําหรับสมาร์ทโฟน เครื่องสวม หรือเซ็นเซอร์ไอโอที |
4. LCC (ตัวนําชิปไร้สารนํา)
ภาพรวม
LCC คือชนิดของบรรจุสินค้าที่ไม่มีหมูที่มีแผ่นโลหะ (แทนปิน) อยู่ในขอบหรือด้านล่างของตัวเรียบสี่เหลี่ยมการใช้งานในสภาพแวดล้อมที่รุนแรง ที่ความทนทานและการประหยัดพื้นที่มีความสําคัญ. LCC ใช้กล่องเซรามิกหรือพลาสติกเพื่อปกป้องชิปจากความชื้น ฝุ่น และการสั่นสะเทือน
ลักษณะหลัก
a.การออกแบบไร้สารนํา: กําจัดสตางค์บิด (จุดความผิดปกติทั่วไปในบรรจุสารที่มีสารนํา)
b. โปรไฟล์เรียบ: ความหนา 1mm ละ 3mm (เหมาะสําหรับอุปกรณ์บาง เช่นนาฬิกาฉลาด)
c. การปิดปิดแบบแฮร์เมติก: รูปแบบ LCC เซรามิกกันอากาศ ป้องกันชิปในเครื่องบินอากาศหรืออุปกรณ์การแพทย์
d. การถ่ายทอดความร้อนที่ดี: ร่างเรียบนั่งตรงบน PCB, การถ่ายทอดความร้อน 30% เร็วกว่าบรรจุ leaded
การใช้งาน
LCC ดีเยี่ยมในสภาพแวดล้อมที่ต้องการ:
a.ท้องอากาศ / การป้องกัน: ดาวเทียม ระบบราดาร์ และวิทยุวิทยุทหาร (ทนอุณหภูมิสูงสุด: -55 °C ถึง 125 °C)
b.ทางการแพทย์: อุปกรณ์ที่สามารถปลูก (เช่น เครื่องกําหนดหัวใจ) และเครื่องมือฉีดเสียงแบบพกพา (การปิดปิดแบบปิดปิดป้องกันความเสียหายของของเหลว)
c.อุตสาหกรรม: เครื่องตรวจจับ IoT ในโรงงาน (ทนต่อการสั่นและฝุ่น)
d. การสื่อสาร: เครื่องรับ RF สําหรับสถานีฐาน 5G (สูญเสียสัญญาณน้อย)
ข้อดีและข้อเสีย
| ข้อดี | รายละเอียด |
|---|---|
| การประหยัดพื้นที่ | 20~30% ขนาดที่น้อยกว่าพัสดุที่มีหมึก (ตัวอย่างเช่น LCC vs QFP) |
| ทนทาน | ไม่มีปินที่จะบิด เหมาะสําหรับการตั้งค่าการสั่นแรงสูง (เช่น เครื่องยนต์รถยนต์) |
| ตัวเลือกแบบปิด | LCCs เซรามิกป้องกันชิปจากความชื้น (สําคัญสําหรับการปลูกฝังทางการแพทย์) |
| ผลงานความถี่สูง |
การเชื่อมต่อพัดสั้น ช่วยลดการสูญเสียสัญญาณในอุปกรณ์ RF ให้น้อยที่สุด |
| ข้อเสีย | รายละเอียด |
|---|---|
| การตรวจสอบที่ยาก | แพ๊ดที่อยู่ภายใต้แพคเกจต้องใช้รังสีเอ็กซ์ เพื่อตรวจสอบข้อเชื่อม |
| การเชื่อมที่ยากลําบาก | ต้องการเตาอบแบบแม่นยํา เพื่อหลีกเลี่ยงการผ่าตัดเย็น |
| ราคาแพง | LCCs เซรามิก ราคา 2 ¢ 3x มากกว่าทางเลือกพลาสติก (เช่น QFN) |
| ไม่ใช้ในการประกอบมือ | แพดเล็กเกินไป (0.2 มิลลิเมตร) สําหรับการผสมด้วยมือ |
5. BGA (Ball Grid Array)
ภาพรวม
BGA เป็นพัสดุที่ติดตั้งบนพื้นผิวที่มีลูกผสมขนาดเล็ก (0.3 มิลลิเมตร) จัดเรียงเป็นกรีดบนด้านล่างของชิปlaptops) เพราะมันพั๊กหลายร้อยการเชื่อมต่อในพื้นที่เล็ก ๆบอลผสมของ BGA ยังช่วยปรับปรุงการระบายความร้อนและความสมบูรณ์แบบของสัญญาณ
ลักษณะหลัก
a. ความหนาแน่นของพินสูง: รองรับพิน 100 ‰ 2,000+ ‰ (ตัวอย่างเช่น SoC ของสมาร์ทโฟนใช้ BGA 500 ‰)
b. การปรับตัวเอง: ลูกผสมหลอมละลายและดึงชิปลงในสถานที่ระหว่างการไหลกลับ, ลดความผิดพลาดการประกอบ.
c. ผลงานทางความร้อนที่ดี: ลูกผสมผสมส่งความร้อนไปยัง PCB ลดความต้านทานทางความร้อน 40~60% เมื่อเทียบกับ QFP
d. การสูญเสียสัญญาณที่ต่ํา: เส้นทางสั้นระหว่างลูกบอลและรอย PCB ลดการผลักดันของปรสิตให้น้อยที่สุด (เหมาะสําหรับข้อมูล 10Gbps +)
การใช้งาน
BGA มีอํานาจในอุปกรณ์เทคโนโลยีสูง:
a.อุปกรณ์อิเล็กทรอนิกส์ผู้บริโภค: สมาร์ทโฟน (เช่นชิป Apple A-series) แท็บเล็ต และอุปกรณ์ที่ใส่ได้
b. Computing: CPU ของคอมพิวเตอร์เล็ปโตป, เครื่องควบคุม SSD และ FPGAs (Field-Programmable Gate Arrays)
c.ทางการแพทย์: เครื่อง MRI พกพาและ DNA Sequencers (ความน่าเชื่อถือสูง)
d.รถยนต์: พรสิเซอร์ ADAS และ SoCs ข้อมูลบันเทิง (จัดการอุณหภูมิสูง)
ข้อมูลตลาดและผลการดําเนินงาน
| เมทริก | รายละเอียด |
|---|---|
| ขนาดตลาด | คาดว่าจะถึง 1.29 พันล้านดอลลาร์ในปี 2024 โดยเติบโตในระดับ 3.2~3.8% ต่อปีจนถึงปี 2034 |
| ตัวแปรหลัก | พลาสติก BGA (73.6% ของตลาด 2024) ราคาถูก น้ําหนักเบา และดีสําหรับอุปกรณ์ผู้บริโภค |
| ความต้านทานทางความร้อน | การเชื่อมต่อกับอากาศ (θJA) ต่ําถึง 15 °C/W (เทียบกับ 30 °C/W สําหรับ QFP) |
| ความสมบูรณ์แบบของสัญญาณ | อุปทานของปรสิต 0.5-2.0 nH (ต่ํากว่า 70-80%) |
ข้อดีและข้อเสีย
| ข้อดี | รายละเอียด |
|---|---|
| ขนาดเล็ก | BGA ขนาด 15 มิลลิเมตรสามารถเก็บปิน 500 จุด (เทียบกับ QFP ขนาด 30 มิลลิเมตรสําหรับจํานวนเดียวกัน) |
| การเชื่อมต่อที่น่าเชื่อถือ | ลูกผสมผสานสร้างข้อต่อแข็งแรงที่ทนต่อการหมุนเวียนของความร้อน (หมุนเวียน 1,000+ ครั้ง) |
| การระบายความร้อนสูง | ลูกผสมเหล็กทําหน้าที่นําความร้อน ทําให้ชิป 100W+ เย็น |
| การประกอบอัตโนมัติ | ทํางานกับสาย SMT สําหรับการผลิตจํานวนมาก |
| ข้อเสีย | รายละเอียด |
|---|---|
| การซ่อมแซมที่ยาก | ลูกผสมเหล็กภายใต้แพ็คเกจต้องใช้สถานีการทํางานใหม่ (ราคา 10k ₹ 50k) |
| ความต้องการในการตรวจสอบ | เครื่อง X-ray จําเป็นต้องตรวจสอบช่องว่างหรือสะพาน solder |
| ความซับซ้อนของการออกแบบ | ต้องการการวางแผน PCB อย่างละเอียด (เช่น ทางทางร้อนใต้แพคเกจ) เพื่อหลีกเลี่ยงการอุ่นเกิน |
6. QFN (Quad Flat Lead-free)
ภาพรวม
QFN เป็นพัสดุที่ติดตั้งบนผิวที่ไม่มีหมู มีร่างสี่เหลี่ยม / สี่เหลี่ยมและแผ่นโลหะอยู่ด้านล่าง (และบางครั้งมีขอบ)อุปกรณ์ที่มีประสิทธิภาพสูงที่ต้องการการจัดการความร้อนที่ดี. QFN เป็นที่นิยมในอุปกรณ์รถยนต์และ IoT
ลักษณะหลัก
a.การออกแบบไร้สารนํา: ไม่มีสตาร์ทที่เด่นลอย ลดผิวเท้า 25% เมื่อเทียบกับ QFP
b. แพดความร้อน: แพดกลางขนาดใหญ่ (50~70% ของพื้นที่บรรจุ) ลดความต้านทานความร้อนลงถึง 20~30 °C/W
c. ผลประกอบความถี่สูง: การเชื่อมต่อพัดสั้นทําให้การสูญเสียสัญญาณน้อยที่สุด (เป็นที่เหมาะสมสําหรับโมดูล Wi-Fi / Bluetooth)
d. ค่าใช้จ่ายต่ํา: QFN พลาสติกถูกกว่า BGA หรือ LCC (ดีสําหรับอุปกรณ์ IoT ขนาดใหญ่)
การใช้งาน
QFN ถูกใช้อย่างแพร่หลายในอุตสาหกรรมรถยนต์และ IoT:
| ภาค | การใช้ |
|---|---|
| อุตสาหกรรมรถยนต์ | ECUs (การฉีดน้ํามัน), ระบบ ABS และเซ็นเซอร์ ADAS (จัดการ -40 °C ถึง 150 °C) |
| IoT/Wearables | โปรเซสเซอร์ชาร์ทวอช โมดูลไร้สาย (เช่น Bluetooth) และเซ็นเซอร์ติดตามความฟิตเนส |
| การแพทย์ | เครื่องเติมน้ําตาลในกระเพาะอาหารพกพาและเครื่องช่วยได้ยิน (ขนาดเล็ก, พลังงานต่ํา) |
| อิเล็กทรอนิกส์บ้าน | เทอร์โมสเตตสมาร์ท ไดรฟ์ LED และรูเตอร์ Wi-Fi |
ข้อดีและข้อเสีย
| ข้อดี | รายละเอียด |
|---|---|
| ขนาดเล็ก | QFN ขนาด 5 มิลลิเมตรแทน QFP ขนาด 8 มิลลิเมตร ช่วยประหยัดพื้นที่ในเครื่องมือที่ใส่ได้ |
| การจัดการความร้อนที่ดี | แพ๊ดความร้อน dissipates 2x ความร้อนมากกว่าพัสดุที่นํา (สําคัญสําหรับ ICs พลังงาน) |
| ราคาถูก | $0.10$0.50ต่อองค์ประกอบ (เทียบกับ $0.50$2.00สําหรับ BGA) |
| การประกอบง่าย | ทํางานกับสาย SMT มาตรฐาน (ไม่จําเป็นต้องมีซ็อตพิเศษ) |
| ข้อเสีย | รายละเอียด |
|---|---|
| สายเชื่อมผสมซ่อน | พัดผสมความร้อนต้องตรวจเช็คด้วยรังสีเอ็กซ์ เพื่อตรวจหาช่องว่าง |
| ต้องการการจัดตั้งที่แม่นยํา | ความผิดพลาด 0.1 มิลลิเมตร อาจทําให้กางเกงสั้น |
| ไม่สําหรับการนับปินสูง | QFN ส่วนใหญ่มี 12 หน่วย 64 หน่วย (ไม่เพียงพอสําหรับ SoCs ที่ซับซ้อน) |
7. QFP (สี่แผ่นแพ็คเกจ)
ภาพรวม
QFP เป็นพัสดุที่ติดตั้งบนพื้นผิวที่มีสายไฟที่คล้ายกับปีกหมึก (บิดออกไปข้างนอก) ในทั้ง 4 ด้านของตัวเรียบ สี่เหลี่ยม / สี่เหลี่ยมการสมดุลความสะดวกในการตรวจสอบกับประสิทธิภาพพื้นที่QFP เป็นสิ่งที่พบได้ทั่วไปในไมโครคอนโทรลเลอร์และอิเล็กทรอนิกส์ผู้บริโภค
ลักษณะหลัก
a.เส้นทางที่เห็นได้ชัด: เส้นทางของปีกหมึกสามารถตรวจสอบได้ง่ายด้วยตาเปล่า (ไม่จําเป็นต้องใช้รังสีเอ็กซ์)
b. จํานวนปินที่ปานกลาง: รองรับ 32?? 200 ปิน (เหมาะสําหรับไมโครคอนโทรลเลอร์เช่น Arduino อะทีเมก้า 328P)
c. โปรไฟล์เรียบ: ความหนา 1.5mm ละ 3mm (เหมาะสําหรับอุปกรณ์บาง เช่นทีวี)
d. การประกอบแบบอัตโนมัติ: สายนํามีระยะห่างกัน 0.4 มิลลิเมตร 0.8 มิลลิเมตร ซึ่งเข้ากันได้กับเครื่องสกัดและวาง SMT มาตรฐาน
การใช้งาน
QFP ใช้ในอุปกรณ์ความซับซ้อนกลาง:
a.ผู้บริโภค: ไมโครคอนโทรลเลอร์ทีวี, เครื่องประมวลผลเครื่องพิมพ์, และชิปเสียง (ตัวอย่างเช่น เสียงบาร์)
b.รถยนต์: ระบบข้อมูลบันเทิงและโมดูลควบคุมสภาพอากาศ
c.อุตสาหกรรม: PLCs (Programmable Logic Controllers) และอินเตอร์เฟซเซอร์
d.ทางการแพทย์: เครื่องตรวจสอบผู้ป่วยพื้นฐานและเครื่องวัดความดันโลหิต
ข้อดีและข้อเสีย
| ข้อดี | รายละเอียด |
|---|---|
| การตรวจสอบง่าย | ผูกเชือกจะเห็นได้ ทําให้การตรวจสอบสับผสมเร็ว (ประหยัดเวลาการทดสอบ) |
| การนับ Pin ที่มีความหลากหลาย | ใช้กับชิปจากไมโครคอนโทรลเลอร์ง่าย (32 พิน) ถึง SoC ช่วงกลาง (200 พิน) |
| ราคาถูก | QFP พลาสติกถูกกว่า BGA หรือ LCC ($ 0.20 ราคา 1.00 บาทต่อส่วนประกอบ) |
| ดีสําหรับการทําต้นแบบ | หมึกสามารถนํามือผสมด้วยเหล็กปลายละเอียด (สําหรับชุดเล็ก) |
| ข้อเสีย | รายละเอียด |
|---|---|
| ความเสี่ยงของการเชื่อมต่อ | สายไฟที่มีความละเอียด (0.4 มิลลิเมตร) อาจสั้นถ้าผสมผสมผสมถูกใช้ผิด |
| ความเสียหายจากหมู | สายลมปีกนกนางนกบิดง่ายในระหว่างการจัดการ (ทําให้วงจรเปิด) |
| รอยเท้าขนาดใหญ่ | QFP 200 ปินต้องการสี่เหลี่ยม 25 มม (เทียบกับ 15 มมสําหรับ BGA ที่มีจํานวนปินเท่ากัน) |
| การจัดการความร้อนที่ไม่ดี | โลหะถ่ายทอดความร้อนน้อย ต้องการระบายความร้อนสําหรับชิป 5W + |
8. TSOP (แพคเกจลักษณะเล็กบาง)
ภาพรวม
TSOP เป็นพัสดุที่ติดอยู่บนพื้นผิวที่บางมาก มีสายไฟฟ้าอยู่สองด้าน และถูกออกแบบให้ใช้กับชิปความจําและอุปกรณ์บาง5 มิลลิเมตร.2mm ทําให้มันเหมาะสมสําหรับคอมพิวเตอร์แล็ปท็อป แมมมรี่การ์ด และสินค้าอื่
ส่งข้อสอบของคุณตรงมาหาเรา